Advanced Lattice Boltzmann Models for the Simulation of Additive Manufacturing Processes

نویسنده

  • Regina Degenhardt
چکیده

This thesis presents the three–dimensional modeling, discretization, implementation, and simulation of additive manufacturing processes on the example of electron beam melting (EBM). The fluid dynamics of the liquified melting pool are modeled by the incompressible Navier–Stokes equations and the incorporation of energy by the heat equation. The applied numerical scheme is a thermal multi–distribution lattice Boltzmann method (LBM) allowing an efficient parallel implementation. The liquid phase of the melting pool and the gas phase of the atmosphere are separated by the free surface lattice Boltzmann method (FSLBM) that does not compute the dynamics of the gas phase explicitly but sets a boundary condition at the interface. Furthermore, the electron beam gun and the metal powder particles are explicitly modeled. A realistic particle size distribution is achieved by using an inverse Gaussian distribution. For the absorption of energy two different algorithms are derived depending on the acceleration voltage of the electron beam. Most of the EBM specific algorithms are embedded in the highly parallel lattice Boltzmann framework WALBERLA. The metal powder particles are simulated by the also highly parallel physics engine pe. Within the coupling particles are represented as rigid bodies in the pe and treated as boundaries in the LBM scheme of WALBERLA. Both frameworks work on state–of–the–art supercomputers. The EBM application and its implementation are validated by benchmarks where analytical solutions are common knowledge. Moreover, the simulation results are compared to experimental data with respect to quality of the product in order to avoid porosity, and ensure dimensional accuracy. Since the numerical and experimental data are highly concordant the implemented EBM model is suitable to develop new processing strategies in order to improve the quality of the products. The simulations support machine users and developers in order to find an optimal parameter set for specific parts. Lastly, the accuracy order of the applied free surface boundary condition is examined via the Chapman–Enskog expansion since it has a huge influence on the simulation results. It is established that the original FSLBM boundary condition is just first order accurate for general cases and since the LBM is second order accurate the overall accuracy is reduced by applying FSLBM. In order to overcome this deficiency an improved second order FSLBM boundary condition is derived successfully. The importance and correctness of this new FSLBM boundary condition is finally underlined by a thorough validation against analytical calculations and experiments.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Simulation of Lid Driven Cavity Flow at Different Aspect Ratios Using Single Relaxation Time Lattice Boltzmann Method

Abstract   Due to restrictions on the choice of relaxation time in single relaxation time (SRT) models, simulation of flows is generally limited base on this method. In this paper, the SRT lattice Boltzmann equation was used to simulate lid driven cavity flow at different Reynolds numbers (100-5000) and three aspect ratios, K=1, 1.5 and 4. The point which is vital in convergence of this scheme ...

متن کامل

Numerical Simulation of Fluid Flow Past a Square Cylinder Using a Lattice Boltzmann Method

The method of lattice boltzmann equation(LBE) is a kinetic-based approach for fluid flow computations. In the last decade, minimal kinetic models, and primarily the LBE, have met with significant success in the simulation of complex hydrodynamic phenomena, ranging from slow flows in grossly irregular geometries to fully developed turbulence, to flow with dynamic phase transitions. In the presen...

متن کامل

Numerical Simulation of Homogeneous, Two and Three Lattice Layers Scaffolds with Constant Density

Advances in the additive manufacturing technology have led to the production of complex microstructures with unprecedented accuracy and due todesigning an effective implant is a major scientific challenge in bone tissue regeneration and bone growth. In this research, titanium alloy cylindrical scaffolds with three-dimensional architectures have been simulated and compared for curing partial bon...

متن کامل

Evaluation of two lattice Boltzmann methods for fluid flow simulation in a stirred tank

In the present study, commonly used weakly compressible lattice Boltzmann method and Guo incompressible lattice Boltzmann method have been used to simulate fluid flow in a stirred tank. For this purpose a 3D Parallel code has been developed in the framework of the lattice Boltzmann method. This program has been used for simulation of flow at different geometries such as 2D channel fluid flow an...

متن کامل

Numerical Simulation of Fluid Flow over a Ceramic Nanoparticle in Drug Delivery System

In this work, for better understanding of drug delivery systems, blood flow over a ceramic nanoparticle is investigated through microvessels. Drug is considered as a nanoparticle coated with the rigid ceramic. Due to the low characteristic size in the microvessel, the fluid flow is not continuum and the no-slip boundary condition cannot be applied. To solve this problem lattice Boltzmann method...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017